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Abstract

We investigate reductions of the two-dimensional Dirac equation imposed by the requirement
of the existence of a differential operatorDn of ordern mapping its eigenfunctions to adjoint
eigenfunctions. For first order operators these reductions (and multicomponent analogs thereof) lead
to the Lame equations descriptive of orthogonal coordinate systems. Our main observation is that
nth order reductions coincide with the projective-geometric ‘Gauss–Codazzi’ equations governing
special classes of line congruences in the projective spaceP2n−1, which is the projectivised kernel
of Dn. In the second order case this leads to the theory ofW-congruences inP3 which belong to
a linear complex, while the third order case corresponds to isotropic congruences inP5. Higher
reductions are compatible with odd order flows of the Davey–Stewartson hierarchy. All these flows
preserve the kernelDn, thus defining nontrivial geometric evolutions of line congruences.

Multicomponent generalizations are also discussed. The correspondence between geometric pic-
ture and the theory of integrable systems is established; the definition of the class of reductions and
all geometric objects in terms of the multicomponent KP hierarchy is presented. Generating forms
for reductions of arbitrary order are constructed.
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1. Introduction

The two-dimensional Dirac equation

∂xΨ2 = βΨ1, ∂yΨ1 = γΨ2, (1)

plays an important role in differential geometry and mathematical physics, arising, in par-
ticular, as the Lax operator of the Davey–Stewartson (DS) hierarchy. Our main goal is
to investigate the class of its reductions (that is, differential constraints on the potentials
β(x, y) andγ(x, y), possibly nonlocal[23]), which are compatible with odd order flows
of the DS hierarchy (the modified Veselov–Novikov system being the first nontrivial flow
among them[2]). The simplest representative of this class of reductions (in one-component
case) is probably the BKP hierarchy[15]. Reductions describing Veselov–Novikov equa-
tion and modified Veselov–Novikov equation[2,14,28]also belong to the class we study.
In terms of the∂̄-dressing method these reductions manifest themselves as special linear
conditions on the kernel of the nonlocal∂̄-problem, and it was shown in[33] that Lame
equations describingN-orthogonal coordinate systems can be obtained in this way. In
the work[34] a general class of conditions on the kernel of the nonlocal∂̄-problem was
described.

The general approach we adopt here is to require the existence of a linear differential
operatorDn of ordern which maps solutions of(1) to solutions of the adjoint problem

∂xΨ
∗
2 = γΨ∗

1 , ∂yΨ
∗
1 = βΨ∗

2 . (2)

In this direct form the method was probably first proposed in[25]. Explicitly, we require

Ψ∗
1 = c1∂nxΨ1 + · · · , Ψ∗

2 = c2∂nyΨ2 + · · · , (3)

whereci = const and dots denote an arbitrary linear combination of the terms∂kxΨ1 and
∂kyΨ2, k = 0,1, . . . , n− 1. Notice that the requirement ofΨ∗

1 ,Ψ∗
2 being adjoint eigenfunc-

tions imposes strong constraints on the coefficients in(3), specifying them almost uniquely
up to a certain natural equivalence. The zero order case

Ψ∗
1 = c1Ψ1, Ψ∗

2 = c2Ψ2,

implies the well-known reduction

c1γ = c2β.
In the case of first order operators

Ψ∗
1 = c1∂xΨ1 + c2βΨ2, Ψ∗

2 = c2∂yΨ2 + c1γΨ1,

one obtains the reduction

c1γx + c2βy = 0.

Our main observation is that reductions of higher order are intimately connected with
projective differential geometry. Moreover, the venue of this geometry is the projectivised
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kernelP2n−1 of the operatorDn. For instance, the case ofD2 is characterized by

Ψ∗
1 = c1(∂2xΨ1 − UΨ1)+ c2(β∂yΨ2 − βyΨ2),

Ψ∗
2 = c2(∂2yΨ2 − VΨ2)+ c1(γ∂xΨ1 − γxΨ1), (4)

where the potentialsβ, γ and the ‘nonlocalities’U, V satisfy the reduction equations

c1(γxx − Uγ) = c2(βyy − Vβ), Uy = 3γxβ + γβx, Vx = 3βyγ + βγy. (5)

The four-dimensional kernel ofD2 is defined by the equations

∂xΨ2 = βΨ1, ∂yΨ1 = γΨ2, ∂2xΨ1 = UΨ1 − c2
c1
(β∂yΨ2 − βyΨ2),

∂2yΨ2 = VΨ2 − c1
c2
(γ∂xΨ1 − γxΨ1), (6)

which, as we point out inSection 2, coincide with the standard Wilczynski-type equations of
aW-congruence inP3 with two focal surfacesΨ1 andΨ2, referred to conjugate coordinates
x andy. Moreover, this congruence lies in a linear complex which can be constructed as
follows. Let us introduce a potentialS by the formulae

Sx = Ψ1Φ
∗
1 − Ψ∗

1Φ1, Sy = Ψ2Φ
∗
2 − Ψ∗

2Φ2,

which explicitly integrate to a skew-symmetric bilinear formS on the space of solutions of
(1)

S(Ψ,Φ) = c1(Ψ1∂xΦ1 −Φ1∂xΨ1)+ c2(Ψ2∂yΦ2 −Φ2∂yΨ2). (7)

The restriction ofS to the kernel ofD2 is the invariant skew-symmetric bilinear form
defining a linear complex of lines inP3 (recall that a linear complex inP3 is given by
one linear equation in Plücker coordinates, that is, by a 4× 4 skew-symmetric matrix). As
we demonstrate inSection 2, the congruence(6) lies in the linear complex defined byS.
The reductionequation (5)are nothing but the corresponding projective ‘Gauss–Codazzi’
equations.

Similarly, the general form ofD3 is

Ψ∗
1 = c1(∂3xΨ1 − 2V∂xΨ1 − VxΨ1)+ c2(β∂2yΨ2 − βy∂yΨ2 + (βyy − 2Vβ)Ψ2),

Ψ∗
2 = c2(∂3yΨ2 − 2W∂yΨ2 −WyΨ2)+ c1(γ∂2xΨ1 − γx∂xΨ1 + (γxx − 2Wγ)Ψ1), (8)

where the potentialsβ, γ and the nonlocalitiesV ,W satisfy the third order reduction equa-
tions

c1(βyyy − 2βyW − βWy)+ c2(γxxx − 2γxV − γVx) = 0,

Wx = 2γβy + βγy, Vy = 2βγx + γβx. (9)
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The kernel ofD3 is six-dimensional, defined by the equations

∂xΨ2 = βΨ1, ∂yΨ1 = γΨ2,

∂3xΨ1 = 2V∂xΨ1 + VxΨ1 − c2
c1
(β∂2yΨ2 − βy∂yΨ2 + (βyy − 2Vβ)Ψ2),

∂3yΨ2 = 2W∂yΨ2 +WyΨ2 − c1
c2
(γ∂2xΨ1 − γx∂xΨ1 + (γxx − 2Wγ)Ψ1), (10)

which, as we demonstrate inSection 3, also give rise to a line congruence with the two focal
surfacesΨ1 andΨ2. Moreover, in this case one can introduce a potentialS by the formulae

Sx = Ψ1Ψ
∗
1 , Sy = Ψ2Ψ

∗
2 ,

which explicitly integrate to a quadratic formS on the space of solutions of(1)

S(Ψ,Ψ)= c1(Ψ1∂
2
xΨ1 − 1

2(∂xΨ1)
2 − VΨ2

1 )+ c2(Ψ2∂
2
yΨ2 − 1

2(∂yΨ2)
2 −WΨ2

2 ). (11)

In the casec1 = −c2 = 1, the restriction ofS to the kernel ofD3 defines the invariant
symmetric scalar product of the signature(3,3). The corresponding congruence is isotropic
with respect toS, thus coinciding with the Plücker image of a surface inP3. Reduction
equation (9)are nothing but the projective ‘Gauss–Codazzi’ equations of surfaces inP3.
The necessary information on Wilczynski’s approach to surfaces inP3 and their Plücker
images inP5 is included inAppendix A.

In the casec1 = c2 = 1, the linear system(10) is descriptive of a surface in Lie sphere
geometry (in hexaspherical representation),Eq. (9)being the corresponding Lie-geometric
‘Gauss–Codazzi’ equations[10]. The quadratic formS is in this case of the signature(4,2),
defining the Lie-invariant scalar product on the kernel ofD3.

All higher reductions are invariant under Bäcklund transformations of the Darboux–Levi
type [22]. In the first order case this was pointed out in[25]. In the case of third order
reductions the corresponding Darboux–Levi transformations coincide with transformations
W (Appendix B).

This approach obviously carries over to the multicomponent linear problem

∂iΨj = βijΨi, (12)

i, j = 1, . . . , N; here the potentialsβij must satisfy the compatibility conditions∂kβij =
βikβkj. Introducing the adjoint linear problem

∂iΨ
∗
j = βjiΨ

∗
i , (13)

we definenth order reductions by requiring the existence of an operatorDn of ordern,
mapping eigenfunctionsΨi to the corresponding adjoint eigenfunctions

Ψ∗
i = ci∂ni Ψi + · · · , ci = const. (14)

In the zero order case we have

Ψ∗
i = ciΨi,

implying the familiar ‘Egorov’ reduction

cjβij = ciβji.
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First order reductions are defined by

Ψ∗
i = ci∂iΨi +

∑
k 	=i
ckβikΨk,

leading to the ‘Lame’ equations

ci∂iβji + cj∂jβij +
∑
k 	=i,j

ckβikβjk = 0,

which are descriptive ofN-orthogonal coordinate systems. In this form, first order reductions
of the system(12)were discussed by Schief[25], see also[33,35]for an alternative approach.

In the multicomponent situation, all higher reductions also have a clear differential-
geometric interpretation, governing special Laplace sequences (of congruences lying in
linear complexes, isotropic congruences, etc., seeSections 2 and 3for explicit formulae
and geometric discussion).

The class of reductions of the form(3) has a very natural interpretation in terms of
the multicomponent KP hierarchy. In fact, this work started from the observation that
‘Gauss–Codazzi’equation (9)of surfaces inP3 belong to a special class of reductions
of Davey–Stewartson hierarchy with odd times. This observation has given an impetus to
the study of connections of this class of reductions with projective geometry, the first results
of which are presented in this work.

Multicomponent KP hierarchy corresponds to the dynamics of the multicomponent
Grassmannian defined by the loop group[17,24,26]. Let the Grassmannian pointW(λ)
be realized as a space of vector functions (rows of lengthN) on the unit circleS in the
complex planeC, and the dual pointW∗(λ) as a space of functions taking their values in
the space of columns of heightN∮

W(λ)W∗(λ)dλ = 0. (15)

The loop groupΓ+N , represented here byN × N diagonal matrix functionsg(λ) on S,
gij(λ) = δijgi(λ), gi(λ) ∈ Γ+ (i.e., functionsgi(λ) are analytic functions in the unit discD
having no zeroes), defines a dynamics (deformations) on the Grassmannian

W(g; λ) = W0(λ)g
−1(λ), W∗(g; λ) = g(λ)W∗

0 (λ), (16)

which evidently preserves the duality(15). If we introduce the standard parameterization
of Γ+N in terms of an infinite number of variables (‘times’ of the hierarchy)

gi(λ) = gi(λ, x) = exp

( ∞∑
n=1

xi(n)λ
n

)
, (17)

the points of the Grassmannian will depend on infinite number of ‘times’, leading to the
standard picture of the hierarchy in terms of PDEs. It is easy to derive linearequation (12)
and dualequation (13)in this context (see, e.g.,[3]). The variablesxi = xi(1) correspond
to the variablesxi introduced above.
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The standard reduction of KP hierarchy describing, in scalar case, thenth Gelfand–Dickey
hierarchy (n = 2 corresponds to KdV hierarchy), is the condition

λnW(λ) ⊂ W(λ), (18)

which is preserved by the dynamics and leads to the stationarity of the point of the Grass-
mannian with respect to some ‘time’ of the hierarchy. In this sense conditions of this type
always lead to dimensional reduction (from a hierarchy of(2 + 1)-dimensional integrable
equations to the hierarchy of(1+1)-dimensional integrable equations). The important fea-
ture of the class of reductions we study is that these reductionsdo not reduce the dimension,
and the corresponding integrable systems are(2 + 1)-dimensional. These reductions are
consistent not with the full dynamics given byΓ+, rather than only the dynamics connected
with its subgroup defined by the condition

g(λ)g(−λ) = I. (19)

In terms of the times(17), this condition just means that even times are equal to zero, and
only evolution with respect to odd times is considered.

In this case, in addition to a pair of dual Grassmannian points, we also consider a dual pair
W∗t(g,−λ) andW t(g; −λ) (‘t’ is for transposed). It is easy to see that the dynamics(16)
defined by the subgroup(19) is identical on the spacesW(g; λ) andW∗t(g,−λ) (W∗(g; λ)
andW t(g,−λ), respectively).

Thus, conditions of the type

W∗t(g; −λ)F(λ) ⊂ W(g; λ), (20)

whereF(λ) is a diagonal matrix,Fij = δijFi(λ) = δijciλn, are invariant in the dynamics, and
define reductions of the initial system. This is exactly the class of reductions(3) we have
introduced above, and it is a rather straightforward technical step to derive transformation
(3) from the condition(20).

Solutions to multicomponent KP hierarchy can be constructed using the∂̄-dressing
method[32]. The spacesW(x, λ) andW∗(x, λ) correspond in this case to spaces of so-
lutions of the nonlocal̄∂-problem and the dual problem (see the explicit construction in
[3]). The class of reductions(20)corresponds in this case to very simple conditions on the
kernel of the nonlocal matrix̄∂-problem

Rt(−µ,−λ) = F(µ)R(λ, µ)F−1(λ).

Conditions of this type were considered in[2,14,33–35].

2. Second order reductions and congruences in P3 lying in linear complexes

2.1. Two-component case

Under the reduction conditions(5), the linear system(6)

∂xΨ2 = βΨ1, ∂yΨ1 = γΨ2, ∂2xΨ1 = UΨ1 − c2
c1
(β∂yΨ2 − βyΨ2),

∂2yΨ2 = VΨ2 − c1
c2
(γ∂xΨ1 − γxΨ1),
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which describes the kernel ofD2, is compatible of rank 4 (indeed, the solution is completely
determined by the values ofΨ1,Ψ2,∂xΨ1,∂yΨ2 at a fixed pointx, y). Therefore, bothΨ1(x, y)

andΨ2(x, y) can be interpreted as four-component position vectors of two surfaces inP3,
M1 andM2 (written in homogeneous coordinates). The first two equations in(6) clearly
imply that the parametrizationx, y is conjugate, moreover, the line(Ψ1, Ψ2) is tangential to
bothM1 andM2 along they- andx-directions, respectively. In other words,M1 andM2 are
focal surfaces of the line congruence(Ψ1, Ψ2). Historically, the theory of line congruences
(that is, two-parameter families of lines inP3) has been one of the most popular chapters
of projective differential geometry, dating back to Monge, Plücker and Kummer. In the
majority of geometrical applications the main role is played by special congruences known
as congruencesW (named after Weingarten), which are characterized by the property that the
(projective) second fundamental forms of the focal surfaces coincide. A direct computation
shows that second fundamental forms of both focal surfacesM1 andM2 indeed coincide,
both being conformal toc2β dx2 − c1γ dy2 (recall that only the conformal class of the
second fundamental form is a projective invariant).

Let us introduce a skew-symmetric scalar product{, } on the kernel ofD2 defined by the
bilinear form(7)

{Ψ1, ∂xΨ1} = 1

c1
, {Ψ2, ∂yΨ2} = 1

c2
(21)

(all other scalar products being zero). Since the two-dimensional plane spanned byΨ1 and
Ψ2 in the four-dimensional kernel ofD2 is clearly Lagrangian (indeed,{Ψ1, Ψ2} = 0), the
projective line(Ψ1, Ψ2) belongs to the corresponding linear complex. The representation of
congruences of linear complexes in the form(6)can be traced back to the works[30,31]. The
compatibility conditions(5) are nothing but the corresponding projective ‘Gauss–Codazzi’
equations. It should be emphasized that congruences of linear complexes constitute a proper
subclass of congruencesW .

All odd order flows of the DS hierarchy preserve the kernel ofD2 and the skew-symmetric
form S. Thus, they induce geometric evolutions of congruences of linear complexes (so
that the equation of the complex stays the same in the process of evolution). Moreover,
these evolutions preserve the conjugate parametrizationx, y and the projectively invariant
functional∫

βγ dx dy,

which is the first nontrivial conservation law of the DS hierarchy.
Similar integrable evolutions in conformal, affine and Lie sphere geometries were a

subject of recent publications[5,11,18–20,27].

2.2. N-component case

In theN-component case(12), Eq. (4)take the form

Ψ∗
i = ci(∂2i Ψi − UiΨi)+

∑
1≤p≤N,
p	=i

cp(βip∂pΨp − (∂pβip)Ψp), (22)
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leading to the reduction

ci(∂
2
i βji − Uiβji)− cj(∂2jβij − Ujβij)+

∑
1≤p≤N,
p	=i,j

cp(βip∂pβjp − βjp∂pβip) = 0,

∂jUi = 3βij∂iβji + βji∂iβij, i 	= j, (23)

which, forN = 2, coincides with(5) after the identificationβ12 = β, β21 = γ. The kernel
of D2 is defined by the linear system

∂iΨj = βijΨi, ∂2i Ψi = UiΨi −
∑

1≤p≤N,
p	=i

cp

ci
(βip∂pΨp − (∂pβip)Ψp),

which is compatible of rank 2N by virtue of the reductionequation (23). Each of theΨi’s
can thus be regarded as a position vector of anN-dimensional submanifoldMi in P2N−1,
parametrized by conjugate coordinatesx1, . . . , xn, ∂i = ∂/∂xi . Moreover, the line(Ψi, Ψj)
is tangential to bothMi andMj. A simple calculation shows that the second fundamental
forms ofMi (notice that there should beN − 1 thereof, whereN − 1 is the codimension of
Mi in P2N−1), are given by

ciβpi dx2
p − cpβip dx2

i , p 	= i.
Each pair of focal submanifolds (say,Mi andMj), has one second fundamental form ‘in
common’, namely, the formciβji dx2

j − cjβij dx2
i . This can be interpreted as a multicodi-

mensional analog of theW-property.
Let us introduce a potentialS by the formulae

∂iS = ΨiΦ∗
i − Ψ∗

i Φi, (24)

which explicitly integrate to a skew-symmetric bilinear formS on the space of solutions of
(12)

S(Ψ,Φ) =
N∑
i=1

ci(Ψi∂iΦi −Φi∂iΨi). (25)

The restriction ofS to the kernel ofD2 is the invariant skew-symmetric bilinear form
corresponding to the skew-symmetric scalar product

{Ψi, ∂iΨi} = 1

ci
(26)

(all other scalar products being zero). Since theN-dimensional subspace spanned byΨi in
the 2N-dimensional kernel ofD2 is clearly Lagrangian (indeed,{Ψi, Ψj} = 0), each of the
congruences(Ψi, Ψj) belongs to one and the same linear complex defined byS.

To the best of our knowledge, the geometric object consisting ofN submanifolds of
codimensionN−1 inP2N−1, connected by congruences which belong to a linear complex,
has not been discussed before.
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3. Third order reductions and isotropic congruences in P5

3.1. Two-component case

Under the reductionequation (9), the linear system(10)

∂xΨ2 = βΨ1, ∂yΨ1 = γΨ2,

∂3xΨ1 = 2V∂xΨ1 + VxΨ1 − c2
c1
(β∂2yΨ2 − βy∂yΨ2 + (βyy − 2Vβ)Ψ2),

∂3yΨ2 = 2W∂yΨ2 +WyΨ2 − c1
c2
(γ∂2xΨ1 − γx∂xΨ1 + (γxx − 2Wγ)Ψ1),

describing the kernel ofD3, is compatible of rank 6 (indeed, the solution is completely
determined by the values ofΨ1,Ψ2, ∂xΨ1, ∂yΨ2, ∂2xΨ1, ∂2yΨ2 at a fixed pointx, y). Therefore,

bothΨ1(x, y) andΨ2(x, y) can be interpreted as position vectors of two surfaces inP5,
M1 andM2. Like in the second order case, the first two equations in(10) imply that the
parametrizationx, y is conjugate, moreover, the line(Ψ1, Ψ2) is tangential to bothM1 and
M2 along they- andx-directions, respectively. In other words,M1 andM2 are focal surfaces
of the line congruence(Ψ1, Ψ2). In the casec1 = −c2 = 1, the quadratic formS given by
(11)defines an invariant symmetric scalar product of the signature (3, 3) on the kernel ofD3
(seeAppendix A). Moreover, the congruence(Ψ1, Ψ2) is isotropic with respect toS. This
implies thatM1 andM2 are Plücker images of asymptotic tangents to a surface inP3. The
passage from a surface inP3 to its Plücker image inP5 is a classical projective-geometric
construction discussed in detail in[1,4,12,13], see a short review inAppendix A. Linear
system(10) defines the standard frame associated with the Plücker image. The reduction
equation (9), which are the compatibility conditions of(10), are nothing but the projective
‘Gauss–Codazzi’ equations of surfaces inP3, see(A.2).

All odd order flows of the DS hierarchy preserve the kernel ofD3 and the quadratic formS.
Hence, they induce geometric evolutions of isotropic congruences (and, therefore, surfaces
in P3), preserving the parametrizationx, y (which is conjugate inP5 and asymptotic in
P3), and the projectively invariant functional∫

βγ dx dy,

which is the projective area.

3.2. N-component case

In theN-component case,Eq. (8)takes the form

Ψ∗
i = ci(∂3i Ψi − 2Vi∂iΨi − (∂iVi)Ψi)+

∑
1≤p≤N,
p	=i

cp(βip∂
2
pΨp

−(∂pβip)∂pΨp + (∂2pβip − 2Vpβip)Ψp),
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the corresponding reduction equations being

ci(∂
3
i βji − 2Vi∂iβji − (∂iVi)βji)+ cj(∂3jβij − 2Vj∂jβij − (∂jVj)βij)

+
∑

1≤p≤N,
p	=i,j

cp(βip∂
2
pβjp + βjp∂

2
pβip − (∂pβip)(∂pβjp)− 2Vpβipβjp) = 0,

∂jVi = 2βij∂iβji + βji∂iβij, i 	= j. (27)

ForN = 2 they reduce to(8) under the identificationβ12 = β, β21 = γ. The kernel ofD3
is defined by the linear system

∂iΨj = βijΨi,

∂3i Ψi = 2Vi∂iΨi + (∂iVi)Ψi −
∑

1≤p≤N,
p	=i

cp

ci
(βip∂

2
pΨp

−(∂pβip)∂pΨp + (∂2pβip − 2Vpβip)Ψp),

which is compatible of rank 3N by virtue of the reductionequation (27). Each of theΨi’s
can thus be regarded as a position vector of anN-dimensional submanifoldMi in P3N−1,
parametrized by conjugate coordinates. Moreover, the line(Ψi, Ψj) is tangential to bothMi
andMj. Introducing the quadratic formS by the equations

∂iS = ΨiΨ∗
i , (28)

one can readily show that this expression explicitly integrates to

S =
∑
i

ci

(
Ψi∂

2
i Ψi −

1

2
(∂iΨi)

2 − ViΨ2
i

)
, (29)

thus defining the invariant symmetric scalar product on the kernel ofD3. One can show that
all congruences(Ψi, Ψj) are isotropic with respect toS.

To the best of our knowledge, the geometric object consisting ofN submanifolds in
P3N−1, N ≥ 3, connected by isotropic congruences, has not been discussed before.
In is not clear, for instance, whether such structure can be related to the Plücker im-
age of anN-dimensional projective submanifold carrying a holonomic asymptotic
net.

4. Reductions in the framework of multicomponent KP hierarchy

The main purposes of this section are:

• to demonstrate that the reduction(20)of multicomponent KP hierarchy leads to the exis-
tence of transformations(3), (14)used to characterize a class of reductions in geometric
context;
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• to explicitly construct the kernel of this transformations;
• to calculate generating potentialsS for reductions of arbitrary order.

First we need to identify geometric objects (wave functions, potentialsβij) in the frame-
work of multicomponent KP hierarchy.

In our description of the infinite-dimensional Grassmannian we will follow Witten[36],
considering the spacesW andW∗ as dual spaces of boundary values of the operator∂̄,
for both of which this operator has zero index. Slightly changing the standard setting for
technical convenience, we will consider the problem of inversion of the∂̄-operator in the
unit disc with center at zero (not at infinity), so that in the formula(17)and in the expression
for F(λ) one should changeλ to λ−1, Fij = δijFi(λ) = δijciλ−n

gi(λ) = gi(λ, x) = exp

( ∞∑
n=1

xi(n)λ
−n
)
. (30)

The case when the operator∂̄ is invertible (has a kernel of zero dimension) for both spaces
of boundary values, corresponds to the principal Grassmannian stratum. In this case both
spacesW andW∗ are transversal to the space of functions analytic in the unit disc. The
evolution of a point belonging to the principal stratum is taking place in the principal
stratum almost everywhere inx, except a manifold of codimension one, where the objects
we need for geometry (wave functions, potentials) have singularities. So we will consider
the dynamics only on the principal stratum.

In the principal stratum, the inversion of the operator(−2πi)−1∂̄λ with the space of
boundary valuesW(λ), and the inversion of the dual operator 2πi∂̄µ with the space of
boundary valuesW∗(µ), is defined by the same Green function (Cauchy kernel)χ(λ, µ)

[3], having very simple analytic properties: it is anN ×N matrix function analytic in both
variables inD outsideλ = µ, behaving as(λ−µ)−1 nearλ = µ. An arbitrary function with
these properties defines a pair of dual points in the principal stratumW ,W∗; the dynamics
of the Cauchy kernel is characterized by Hirota’s bilinear identity∮

χ(ν, µ; x)g(ν, x)g−1(ν, x′)χ(λ, ν; x′)dν = 0, (31)

implied by(15) and (16)(see[3]). Thus, the Cauchy kernel gives a compact representation
of a dual pair of points on the Grassmannian, and defines all objects considered in the
geometric setting.

LinearEqs. (1), (2), (12) and (13), as well as linear transformations defining the reductions
(3) and (14)are connected with expansions of some functions belonging toW andW∗ with
respect to a special basis. To construct this basis in the spacesW andW∗, we start with
the functionsχi(λ; x) = χi (λ,0; x) ∈ W(λ, x) andχ∗

i (λ; x) = χ i(0, µ; x) ∈ W∗(λ, x),
whereχi andχ i denoteith row andith column of the matrixχ. Using the operatorsDi,
D∗
i , 1 ≤ i ≤ N
DiWj(λ, x) = (∂i + δijλ−1)Wj, D∗

i W
∗
j (λ, x) = (∂i − δijλ−1)W∗

j ,

possessing the property

DiW(λ, x) ⊂ W(λ, x), D∗
i W

∗(λ, x) ⊂ W∗(λ, x)
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(this property is readily checked using(16) and (30); in the ∂̄-dressing method the ring of
operators possessing this property is known as the Zakharov–Manakov ring[32]), we obtain
a basis in the form

Dni χi ∈ W, D∗n
i χ

∗
i ∈ W∗, 0 ≤ n <∞, 1 ≤ i ≤ N. (32)

Expressing the functionsDiχj(λ, x) ∈ W andD∗
i χj(λ, x) ∈ W∗, i 	= j, through this basis,

we get

Diχj(λ, x) = βij(x)χi(λ, x), (33)

D∗
i χj(λ, x) = βji(x)χ∗

i (λ, x), (34)

where

βij(x) = χji(0,0; x).

In terms of Baker–Akhieser functions

ψi(λ, x) = χi(λ; x)g(λ, x) ∈ W0(λ), ψ∗
i (λ, x) = g−1(λ, x)χ∗

i (λ; x) ∈ W∗
0 (λ),

the operatorsDi andD∗
i act as usual differentiations, and(33), (34) imply

∂iψj(λ, x) = βij(x)ψi(λ, x), (35)

∂iψ
∗
j (λ, x) = βji(x)ψ∗

i (λ, x). (36)

Introducing scalar wave functions

Ψi(x) =
∮
ψi(λ, x)ρ(λ)dλ, (37)

Ψ∗
i (x) =

∮
ρ∗(λ)ψ∗

i (λ, x)dλ, (38)

whereρ(λ) (column) andρ∗(λ) (row) are arbitrary weight functions, we readily derive
linearEqs. (12) and (13)from (35) and (36).

Similarly, let us define a reduction by the formula(20) and consider the expansion of
χ∗t
i (−λ; x)F(λ) ∈ W(λ, x) in the basis(32)

χ∗t
i (−λ; x)F(λ) = ciDni χi(λ, x)+

N∑
j=1

n−1∑
p=0

Ujn(x)D
p
j χj(λ, x),

in terms of dual wave functions

Ψ∗ red
i (x) =

∮
ψ∗t
i (−λ; x)F(λ)ρ(λ)dλ, (39)

which can be represented in the form(38)with

ρ∗(λ) = ρ∗ red(λ) = −ρt(−λ)F(−λ).
In this way one arrives at the linear transformations(3) and (14)which were used to define
reductions in geometric context.
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Let us consider the kernel of linear transformations(3), (14). This kernel is connected
with the linear space of weight functionsρ(λ), for which the dual wave functionsΨ∗ red

i (x)
are equal to zero

Ψ∗ red
i (x) =

∮
ψ∗t
i (−λ; x)F(λ)ρ(λ)dλ = 0.

It is easy to conclude that

ρ(λ) ∈ F−1(λ)W t
0(−λ).

Using the reduction condition(20) and some linear algebra, we represent the linear space
F−1(λ)W t

0(−λ) in the form

F−1(λ)W t
0(−λ) = W∗

0 (λ)⊕W∗an
0 (λ), (40)

whereW∗an
0 (λ) is a finite-dimensional space of functions analytic in the unit disc. This space

has the dimension 2n for the transformation(3), andNn for the transformation(14) (n is
the order of reduction, i.e., the power ofλ−1 in F(λ), andN is the number of components).
The basis in this space is given by the functions

ρ
p
i (λ) = F−1(λ)∂

p
i ψ

t
i(−λ, x)x=0 ∈ W∗an

0 (λ), (41)

where 0≤ p ≤ n − 1. The representation(40) implies that wave functions belonging to
the kernel of transformations(3) and (14)

Ψi(x) =
∮
ψi(λ; x)ρ(λ)dλ, ρ(λ) ∈ W∗

0 (λ)⊕W∗an
0 (λ),

correspond to the weight functions belonging toWan
0 (λ) (for ρ(λ) ∈ W∗

0 (λ)wave functions
evidently equal zero), and the dimension of the kernel coincides with the dimension of the
analytic space. An arbitrary wave function belonging to the kernel can be expressed as

Ψi(x) =
∮
ψi(λ, x)


 N∑
k=1

n−1∑
p=0

c
p

k ρ
p

k (λ)


 dλ, (42)

wherecpk are arbitrary constants, and the functionsρpi (λ) are given by the formula(41).
Wave functions belonging to the kernel are specified by the values of the functions∂

p
i Ψi(x),

0 ≤ p ≤ n−1, 1≤ i ≤ N at the initial pointx = 0 (i.e., these values define the constants in
(42)). This is an immediate corollary of(3) and (14), or directly(42). One can demonstrate
that the evolution of the vector of these values with respect to some time of the hierarchy is
defined by a closed set of linear equations, and to explicitly express this vector through the
initial vector for arbitrary values of times.

4.1. Generating forms S for reductions of arbitrary order

Now we will construct generating quadratic formsS for reductions of arbitrary order
(see expressions(25) and (29)in second and third order cases). Generating forms explicitly
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define transformations(3) and (14)(in the odd order case these forms are defined by the
formula(28), in the even order case this formula is replaced by(24)). An interesting feature
is that for odd order reductions the forms are symmetric, while for even order reductions
they are antisymmetric. This implies that reductions of even and odd orders are connected
with geometric objects of different types, and an illustration of that is given by our detailed
consideration of reductions of first, second and third orders.

In terms of the Cauchy kernel, the definition of reduction(20) leads to the equation∮
χt(λ,−ν; x)F(ν)χ(µ, ν; x)dν = 0, µ, λ ∈ D (43)

(equations of this type were used in[3] to define reductions in terms of the Cauchy kernel).
The integration of this equation gives

χt(λ,−µ; x)F(µ)− F(−λ)χ(µ,−λ; x) = Resν=0(χ
t(λ,−ν; x)F(ν)χ(µ, ν; x)).

(44)

It is convenient to introduce another basis in the spacesW andW∗ defined through the
Cauchy kernel by the expansions

χi (λ, µ; x) =
∞∑
n=0

χi(n)(λ, x)µn, χi(n)(λ, x) ∈ W(λ, x), (45)

χ i(λ, µ; x) =
∞∑
n=0

χ∗
i(n)(µ, x)λ

n, χ∗
i(n)(µ, x) ∈ W∗(µ, x), (46)

where 0≤ n <∞, 1 ≤ i ≤ N andχi(0)(λ, x) = χi(λ, x), χ∗
i(0)(µ, x) = χ∗

i (µ, x) in terms
of notations introduced before. Then it is possible to transform the r.h.s. ofEq. (44)to

Resν=0(χ
t(λ,−ν; x)F(ν)χ(µ, ν; x)) =

N∑
i=1

ci
∑

p+q=n−1

χt
i(p)(λ, x)(−1)pχi(q)(µ, x).

(47)

Performing a transition to scalar wave functions, we define the generating formSn by the
expression

Sn(x) =
N∑
i=1

ciS
i
n, Sin = 1

2

∑
p+q=n−1

Ψ ′
i(p)(x)(−1)pΨi(q)(x), (48)

where we have introduced higher wave functions

Ψi(p)(x) =
∮
χi(p)(λ,0; x)g(λ, x)ρ(λ)dλ, (49)

Ψi(0)(x) = Ψi(x); for Ψ ′
i(n)(x) the weight function isρ′(λ) (an arbitrary second weight

function). Higher wave functions can be expressed through the wave functionsΨi, Ψ
′
i and

their derivatives by virtue of the formulae connecting the basises(32) and (45)

Ψi(p+1) = ∂iΨi(p) − βpiiΨi, (50)
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∂jΨi(p) = βpjiΨj, i 	= j, 0 ≤ p <∞. (51)

Hereβ0
ij = βij, and higher potentialsβpii , β

p
ji are connected withβij by the relations implied

by compatibility conditions for the relations(50) and (51)

β
p+1
ji = ∂iβpji − βjiβ

p
ii , (52)

∂jβ
p
ii = βijβ

p
ji . (53)

Using relations(50) recursively, it is possible to expressSn as a quadratic form inΨi, Ψ ′
i

and their derivatives, with the coefficients connected withβij by the formulae(52) and (53)
(and thus to get expressions of the type(25) and (29)). It is easy to see that the form(48) is
symmetric for oddn and antisymmetric for evenn, i.e., for oddn it is invariant under the
permutation ofΨi andΨ ′

i , and for evenn the permutation changes the sign of the expression
(the permutation of wave functions corresponds to the permutation of weight functions
ρ, ρ′).

To obtain the formula of the type(24) and (28), we will use the general equation

∂iΦ(x) = Ψi(x)Ψ∗
i (x), (54)

whereΨi(x), Ψ∗
i (x) are given by the expressions(37), (38), and

Φ(x) =
∮
ρ∗(µ)g−1(µ, x)χ(λ, µ; x)g(λ, x)ρ(λ)dλdµ,

which follows directly from Hirota’s bilinear identity(31) (see, e.g.,[3]).
For oddn, from the formulae(44), (47) and (48)and theEq. (54)we obtain

∂iSn(x) = 1
2(ΨiΨ

∗ red′
i + Ψ ′

iΨ
∗ red
i ), (55)

whereΨ∗ red
i is defined by(39). Takingρ = ρ′, we get exactly the formula(28). Thus, in the

odd order case, the reduction is characterized by theEq. (55), where the generating form is
given by the expression(48). Using(52) and (53)one can verify that partial derivatives∂j
of each of the termsSin in the expression(48)can be represented as

∂iS
j
n = 1

2(Ψi(D
j
nΨ

′)i + Ψ ′
i (D

j
nΨ)i),

whereDjn are linear differential operators. Then from theEq. (55)we obtain the explicit
formula for the transformations(3) and (14)

Ψ∗ red
i =

N∑
j=1

cj(D
j
nΨ)i.

In the even order case instead of(55)we have

∂iSn(x) = 1
2(ΨiΨ

∗ red′
i − Ψ ′

iΨ
∗ red
i ) = Ψi ∧ Ψ∗ red

i . (56)

Partial derivatives∂j of the termsSin in the expression(48)can be expressed as

∂iS
j
n = Ψi ∧ (DjnΨ)i.
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The functionΨ∗ red
i (respectively, transformations(3) and (14)), are defined by theEq. (56)

up to a termUi(x)Ψi

Ψ∗ red
i = Ui(x)Ψi +

N∑
j=1

cj(D
j
nΨ)i, (57)

which can be fixed either by taking Baker–Akhiezer functions as wave functions and con-
sidering analytic properties inλ, or just by a direct substitution into the dual operator.
Nevertheless, theexistence of transformations(3) and (14)(given by the formula(57)), is
implied by theEq. (56), and can be used as a definition of the reduction.
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Appendix A. Surfaces in projective differential geometry

Projective differential geometry of surfacesM2 in P3 has been extensively developed in
the first half of the 19th century in the works of Wilczynski, Fubini,Ĉech, Cartan, Tzitzeica,
Demoulin, Rozet, Godeaux, Lane, Eisenhart, Finikov, Bol and many others. Based on[29]
(see also[7–9,12]), let us briefly recall Wilczynski’s approach to the construction of surfaces
M2 in projective spaceP3 in terms of solutions of a linear system

rxx = βry + 1
2(V − βy)r, ryy = γrx + 1

2(W − γx)r, (A.1)

whereβ, γ, V,W are functions ofx and y. If we cross-differentiate(A.1) and assume
r, rx, ry, rxy to be independent, we arrive at the compatibility conditions[21, p. 120]

βyyy − 2βyW − βWy = γxxx − 2γxV − γVx, Wx = 2γβy + βγy,
Vy = 2βγx + γβx, (A.2)

which coincide with(9). For any fixedβ, γ, V,W satisfying(A.2), the linear system(A.1)
is compatible and possesses a solutionr = (r0, r1, r2, r3) whereri(x, y) can be regarded
as homogeneous coordinates of a surface in projective spaceP3. One may think ofM2

as a surface in a three-dimensional space with position vectorR = (r1/r0, r2/r0, r3/r0).
If we choose any other solutioñr = (r̃0, r̃1, r̃2, r̃3) of the same system(A.1) then the
corresponding surfacẽM2 with position vectorR̃ = (r̃1/r̃0, r̃2/r̃0, r̃3/r̃0) constitutes a
projective transform ofM2, so that any fixedβ, γ, V,W satisfying(A.2) define a surface
M2 uniquely up to projective equivalence. Moreover, a simple calculation yields

Rxx = βRy + aRx, Ryy = γRx + bRy (A.3)

(a = −2r0x/r
0, b = −2r0y/r

0) which implies thatx, y are asymptotic coordinates onM2.
System(A.3) can be viewed as an “affine gauge” of system(A.1). In what follows, we
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assume that our surfaces are hyperbolic and the corresponding asymptotic coordinatesx, y

are real.1 SinceEq. (A.2)specify a surface uniquely up to projective equivalence, they can
be viewed as the ‘Gauss–Codazzi’ equations in projective geometry.

Even though the coefficientsβ, γ, V,W define a surfaceM2 uniquely up to projective
equivalence via(A.1), it is not entirely correct to regardβ, γ, V,W as projective invariants.
Indeed, the asymptotic coordinatesx, y are only defined up to an arbitrary reparametrization
of the form

x∗ = f(x), y∗ = g(y), (A.4)

which induces a scaling of the surface vector according to

r∗ =
√
f ′(x)g′(y)r. (A.5)

Thus[4, p. 1], the form ofEq. (A.1)is preserved by the above transformation with the new
coefficientsβ∗, γ∗, V ∗,W∗ given by

β∗ = βg′

(f ′)2
, V ∗(f ′)2 = V + S(f), γ∗ = γf ′

(g′)2
,

W∗(g′)2 = W + S(g), (A.6)

whereS(·) is the Schwarzian derivative, that is

S(f) = f
′′′

f ′ − 3

2

(
f ′′

f ′

)2

.

The transformation formulae(A.6) imply that the symmetric two-form

2βγ dx dy,

and the conformal class of the cubic form

β dx3 + γ dy3

are absolute projective invariants. They are known as the projective metric and the Darboux
cubic form, respectively, and play an important role in projective differential geometry.
In particular, they define a ‘generic’ surface uniquely up to projective equivalence. The
vanishing of the Darboux cubic form is characteristic for quadrics: indeed, in this case
β = γ = 0 so that asymptotic curves of both families are straight lines. The vanishing of
the projective metric (which is equivalent to eitherβ = 0 or γ = 0) characterizes ruled
surfaces. In what follows we exclude these two degenerate situations and requireβ 	= 0,
γ 	= 0.

Using(A.4)–(A.6), one can verify that the four points

r, r1 = rx − 1

2

γx

γ
r, r2 = ry − 1

2

βy

β
r,

η = rxy − 1

2

γx

γ
ry − 1

2

βy

β
rx +

(
1

4

βyγx

βγ
− 1

2
βγ

)
r (A.7)

1 The elliptic case is dealt with in an analogous manner by regardingx, y as complex conjugates.
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are defined in an invariant way, that is, under the transformation formulae(A.4)–(A.6) they
acquire a nonzero multiple which does not change them as points in projective spaceP3.
These points form the vertices of the so-called Wilczynski moving tetrahedron[4,12,29].
Since the lines passing throughr, r1 andr, r2 are tangential to thex- andy-asymptotic
curves, respectively, the three pointsr, r1, r2 span the tangent plane of the surfaceM2. The
line throughr1, r2 lying in the tangent plane is known as the directrix of Wilczynski of
the second kind. The line throughr, η is transversal toM2 and is known as the directrix
of Wilczynski of the first kind. It plays the role of a projective ‘normal’. Wilczynski’s tetrahe-
dron proves to be the most convenient tool in projective differential
geometry.

Using(A.1) and (A.7), we easily derive forr, r1, r2, η the linear equations[12, p. 42]




r

r1

r2

η



x

=




1

2

γx

γ
1 0 0

1

2
b −1

2

γx

γ
β 0

1

2
k 0

1

2

γx

γ
1

1

2
βa

1

2
k

1

2
b −1

2

γx

γ







r

r1

r2

η


 ,




r

r1

r2

η



y

=




1

2

βy

β
0 1 0

1

2
l

1

2

βy

β
0 1

1

2
a γ −1

2

βy

β
0

1

2
γb

1

2
a

1

2
l −1

2

βy

β







r

r1

r2

η


 , (A.8)

where we introduced the notation

k= βγ − ( ln β)xy, l = βγ − ( ln γ)xy, a = W − ( ln β)yy − 1
2( ln β)

2
y,

b= V − ( ln γ)xx − 1
2( ln γ)

2
x. (A.9)

The compatibility conditions ofEq. (A.8)imply

( ln β)xy = βγ − k, ( ln γ)xy = βγ − l, ax = ky + βy
β
k, by = lx + γx

γ
l,

βay + 2aβy = γbx + 2bγx, (A.10)

which is just the equivalent form of the projective “Gauss–Codazzi”equation (A.2).
Eq. (A.8)can be rewritten in the Plücker coordinates. For a convenience of the reader we

briefly recall this construction. Let us consider a linel in P3 passing through the pointsa
andb with the homogeneous coordinatesa = (a0 : a1 : a2 : a3) andb = (b0 : b1 : b2 : b3).
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With the line l we associate a pointa ∧ b in projective spaceP5 with the homogeneous
coordinates

a ∧ b = (p01 : p02 : p03 : p23 : p31 : p12),

where

pij = det

(
ai aj

bi bj

)
.

The coordinatespij satisfy the well-known quadratic Plücker relation

p01p23 + p02p31 + p03p12 = 0. (A.11)

Instead ofa and b we may consider an arbitrary linear combinations thereof without
changinga ∧ b as a point inP5. Hence, we arrive at the well-defined Plücker corre-
spondencel(a,b) → a ∧ b between lines inP3 and points on the Plücker quadric in
P5. Plücker correspondence plays an important role in the projective differential geom-
etry of surfaces and often sheds some new light on those properties of surfaces which
are not ‘visible’ inP3 but acquire a precise geometric meaning only inP5. Thus, let
us consider a surfaceM2 ∈ P3 with the Wilczynski tetrahedronr, r1, r2, η satisfying
Eq. (A.8). Since the two pairs of pointsr, r1 and r, r2 generate two lines
in P3 which are tangential to thex- and y-asymptotic curves, respectively, the
formulae

U = r ∧ r1, V = r ∧ r2,

define the images of these lines under the Plücker embedding. Hence, with any surface
M2 ∈ P3 there are canonically associated two surfacesU(x, y) andV(x, y) in P5 lying on
the Plücker quadric(A.11). In view of the formulae

Ux = βV, Vy = γU,

we conclude that the line inP5 passing through a pair of points(U,V) can also be generated
by the pair of points(U,Ux) (and hence is tangential to thex-coordinate line on the surface
U) or by a pair of points(V,Vy) (and hence is tangential to they-coordinate line on the
surfaceV). Consequently, the surfacesU andV are two focal surfaces of the congruence of
straight lines(U,V) or, equivalently,V is the Laplace transform ofU with respect tox and
U is the Laplace transform ofV with respect toy.

Introducing

A = r2 ∧ r1 + r ∧ η, B = r1 ∧ r2 + r ∧ η, P = 2r2 ∧ η, Q = 2r1 ∧ η,
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we arrive at the following equations for the Plücker coordinates:




U

A

P

V

B

Q



x

=




0 0 0 β 0 0

k 0 0 0 0 0

0 k 0 −βa 0 0

0 0 0
γx

γ
1 0

0 0 0 b 0 1

−βa 0 β 0 b −γx
γ







U

A

P

V

B

Q



,




U

A

P

V

B

Q



y

=




βy

β
1 0 0 0 0

a 0 1 0 0 0

0 a −βy
β

−γb 0 γ

γ 0 0 0 0 0

0 0 0 l 0 0

−γb 0 0 0 l 0







U

A

P

V

B

Q



. (A.12)

Eq. (A.12)are consistent with the following table of scalar products:

(U,P) = −1, (A,A) = 1, (V,Q) = 1, (B,B) = −1, (A.13)

all other scalar products being equal to zero. This defines a scalar product of the signature
(3, 3) which is the same as that of the quadratic form(A.11). Equivalently, one can say that
the quadratic form

S = QV− PU+ 1
2(A

2 − B2)

is an integral of(A.12). The explicit form ofS in terms ofU andV is

S = VxxV− 1
2V

2
x − VV2 − (UyyU− 1

2U
2
y −WU2).

Notice thatEq. (A.12)and the expression forS identically coincide with(10) and (11)if
one setsU = Ψ2, V = Ψ1, c1 = −c2 = 1.

Appendix B. Congruences W

There exists an important class of transformations in projective differential geometry
which leave the system(A.1) form-invariant. These transformations are generated by con-
gruencesW , and require a solution of certain Dirac equation on the surfaceM2. Here we
briefly recall this construction following[6,12,16].

LetM2 be a surface with the position vectorr satisfying(A.1). With any pair of functions
U andV solving the Diracequation (1)

Ux = βV, Vy = γU, (B.1)
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we associate a surfacẽM2 with the position vectorr′ given by the formula

r′ = Vr1 − Ur2 + 1

2

(
V
γx

γ
− Uβy

β
− Vx + Uy

)
r. (B.2)

In order to write down the equations forr′, it is convenient to introduce certain quantities
which are combinations ofU,V and their derivatives. First of all, we defineA andB by the
formulae

Uy = βy
β
U+A, Vx = γx

γ
V+ B

(in fact, we are copyingEq. (A.12)for the Plücker coordinates). The compatibility conditions
Uxy = Uyx andVxy = Vyx imply

Ax = kU, By = lV,

wherel andk are the same as in(A.9). Let us introduceP andQ by the formulae

Ay = aU+ P, Bx = bV+Q.

Then compatibility conditions imply

Px = −βaV+ kA, Qy = −γbU+ lB.

Finally, we introduce the quantitiesH andK via

Py = aA− βy
β
P− γbV+ γQ−K, Qx = bB− γx

γ
Q− βaU+ βP+H,

so that compatibility conditions imply thatH andK satisfy the equation dual to(B.1)

Hy = βK, Kx = γH. (B.3)

Equations forU,A,P,V,B,Q, H,K can be rewritten in matrix form




U

A

P

V

B

Q

H

K



x

=




0 0 0 β 0 0 0 0

k 0 0 0 0 0 0 0

0 k 0 −βa 0 0 0 0

0 0 0
γx

γ
1 0 0 0

0 0 0 b 0 1 0 0

−βa 0 β 0 b −γx
γ

1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 γ 0







U

A

P

V

B

Q

H

K



,
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U

A

P

V

B

Q

H

K



y

=




βy

β
1 0 0 0 0 0 0

a 0 1 0 0 0 0 0

0 a −βy
β

−γb 0 γ 0 −1

γ 0 0 0 0 0 0 0

0 0 0 l 0 0 0 0

−γb 0 0 0 l 0 0 0

0 0 0 0 0 0 0 β

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







U

A

P

V

B

Q

H

K



, (B.4)

where the elements∗ are not yet specified.Eq. (B.4)reduce to(A.12) under the reduction
H = K = 0. In what follows we will also need the quantity

S = QV− PU+ 1
2(A

2 − B2), (B.5)

which, in view of(B.4), satisfies the equations

Sx = VH, Sy = UK. (B.6)

Remark. The explicit form ofS in terms ofU andV is

S = VxxV− 1
2V

2
x − VV 2 − (UyyU− 1

2U
2
y −WU 2),

so that

H = Vxxx − 2VVx − VxV− βUyy + βyUy + (2βW − βyy)U,

−K = Uyyy − 2WUy −WyU− γVxx + γxVx + (2γV − γxx)V.

Notice that equationsH = K = 0 identically coincide with(8) under the obvious identifi-
cations. In particular,H andK solve the adjoint linear problem(B.3).

Now a direct calculation gives:

r = −2
V

S
r′
x − 2

U

S
r′
y + 1

S

(
A+ B+ γx

γ
V+ βy

β
U

)
r′. (B.7)

Eqs. (B.2) and (B.7)imply that the liner ∧ r′ joining the corresponding pointsr andr′ is
tangential to both surfacesM2 amdM̃2, which are thus focal surfaces of the line congruence
r ∧ r′. Moreover, the formulae

r′
xx = Sx

S
r′
x +

(
Sx

S

U

V
− β

)
r′
y + 1

2

(
V + βy − Sx

SV

(
A+ B+ γx

γ
V+ βy

β
U

))
r′,

r′
yy = Sy

S
r′
y +

(
Sy

S

V

U
− γ

)
r′
x + 1

2

(
W + γx − Sy

SU

(
A+ B+ γx

γ
V+ βy

β
U

))
r′

(B.8)

(which are the result of quite a long calculation) demonstrate thatx andy are asymptotic
coordinates on the transformed surfaceM̃2 as well, so that the congruencer ∧ r′ preserves
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the asymptotic parametrization of its focal surfaces. Such congruences play a central role
in projective differential geometry and are known as congruencesW . By a construction, a
congruenceW with one given focal surfaceM2 is uniquely determined by a solutionU,V
of the linear Diracequation (B.1). Normalizing the vectorr′ asr′ = √

Sr̃, we can rewrite
Eq. (B.8)in the canonical form(A.1)

r̃xx = β̃r̃y + 1
2(Ṽ − β̃y)r̃, r̃yy = γ̃ r̃x + 1

2(W̃ − γ̃x)r̃, (B.9)

where the transformed coefficientsβ̃, γ̃, Ṽ , W̃ are given by the formulae

β̃= Sx
S

U

V
− β = HU

S
− β, γ̃ = Sy

S

V

U
− γ = KV

S
− γ,

Ṽ = V − Sx
S

Vx
V

+ 3

2

(
Sx

S

)2

− Sxx

S
, W̃ = W − Sy

S

Uy
U

+ 3

2

(
Sy

S

)2

− Syy

S
,

(B.10)

we point out the simple identitỹβγ̃ = βγ−( ln S)xy. The surfacẽM2 is called aW-transform
of the surfaceM2. The construction ofW-congruences on the transformed surfaceM̃2

requires a solution of the transformed Dirac equation

∂xΨ̃2 = β̃Ψ̃1, ∂yΨ̃1 = γ̃Ψ̃2, (B.11)

whereβ̃ andγ̃ are given by(B.10). Let us introduce a potentialM by the formulae

Mx = HΨ1, My = KΨ2,

the compatibility of which readily follows from(1) and (2). Then an arbitrary solutionΨ1,
Ψ2 of (1) generates a solutioñΨ1, Ψ̃2 of (B.11)by the formula

Ψ̃1 = Ψ1 − VM
S
, Ψ̃2 = Ψ2 − UM

S
, (B.12)

which is a specialization of the Darboux–Levi transformation, see[25].
CongruencesW provide a standard tool for constructing Bäcklund transformations. Sup-

pose we are given a class of surfaces specified by certain extra constraints imposed on
β, γ, V,W . Let us try to find a congruenceW such that the second focal surface will also be-
long to the same class. This requirement imposes additional restrictions onU andV, which
usually turn to be linear and, moreover, contain an arbitrary constant parameter, so thatEq.
(B.4) become a “Lax pair” for the class of surfaces under study. Since the Diracequation
(B.1) is a part of this Lax pair, it is not surprising that surfaces in projective differential
geometry are closely related to the DS hierarchy. Particularly interesting classes of surfaces
correspond to reductions which are quite familiar in the modern soliton theory. These are

isothermally-asymptotic surfaces (β = γ),
surfacesR0 (β = 1 orγ = 1),
surfacesR (βy = γx),
surfaces of Jonas (βx = γy), etc.

The construction of the corresponding Bäcklund transformations was carried out primar-
ily by Jonas[16], see also[7–9].
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